THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW11 Solution

Yan Lung Li

1. (P. 286 Q3)

Let $\epsilon>0$ be given, since $\sum_{n} c_{n} \sin n x$ converges uniformly on \mathbb{R}, by Cauchy Criterion (9.4.5), there exists $N \in \mathbb{N}$ such that for all $n \geq N, x \in \mathbb{R}$

$$
\left|c_{n} \sin n x+\ldots+c_{2 n} \sin 2 n x\right|<\epsilon
$$

Now fix $n \geq N$, choose $x=\frac{\pi}{6 n}$, then for all $k \in \mathbb{N}$ such that $n \leq k \leq 2 n, \frac{1}{2} \leq \sin k x \leq 1$. Since (c_{n}) is a sequence of positive decreading he above inequality becomes

$$
\begin{aligned}
\epsilon & >\left|c_{n} \sin n x+\ldots+c_{2 n} \sin 2 n x\right| \\
& =c_{n} \sin n x+\ldots+c_{2 n} \sin 2 n x \\
& \geq \frac{1}{2}\left(c_{n}+\ldots+c_{2 n}\right) \\
& \geq \frac{n+1}{2} c_{2 n}
\end{aligned}
$$

Therefore, $2(n+1) c_{2 n}<4 \epsilon$. Now we claim that for all $m \geq 2 N+1,\left|m c_{m}\right|<4 \epsilon$
Case I: m is even: then $m=2 n$ for some $n \geq N$, then by above inequality,

$$
\left|m c_{m}\right|=2 n c_{2 n}<2(n+1) c_{2 n}<4 \epsilon
$$

Case II: m is odd: then $m=2 n+1$ for some $n \geq N$, then by above inequality,

$$
\left|m c_{m}\right|=(2 n+1) c_{2 n+1}<2(n+1) c_{2 n}<4 \epsilon
$$

Therefore, for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for all $m \geq 2 N,\left|m c_{m}\right|<4 \epsilon$, i.e.

$$
\lim _{n} n c_{n}=0
$$

2. (P. 286 Q6b)

Due to the result of Q5 of Exercises 9.4, it suffices to compute $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}$:

$$
\frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}=\frac{n^{\alpha}}{n!} \cdot \frac{(n+1)!}{(n+1)^{\alpha}}=\frac{n+1}{\left(1+\frac{1}{n}\right)^{\alpha}}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}=\lim _{n \rightarrow \infty} \frac{n+1}{\left(1+\frac{1}{n}\right)^{\alpha}}=+\infty$, and hence the radius of convergence is $R=+\infty$.
3. (P. 286 Q6c)

Due to the result of Q5 of Exercises 9.4, it suffices to compute $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}$:

$$
\frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}=\frac{n^{n}}{n!} \cdot \frac{(n+1)!}{(n+1)^{n}}=\frac{1}{\left(1+\frac{1}{n}\right)^{n}}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|}=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{n}}=\frac{1}{e}$, and hence the radius of convergence is $R=\frac{1}{e}$.
4. (P. 286 Q6f)

We compute $\rho=\lim _{n \rightarrow \infty}\left(\left|a_{n}\right|\right)^{\frac{1}{n}}$ directly:

$$
\left(\left|a_{n}\right|\right)^{\frac{1}{n}}=\left(n^{-\sqrt{n}}\right)^{\frac{1}{n}}=\frac{1}{n^{\frac{1}{\sqrt{n}}}}
$$

To compute $\lim _{n \rightarrow \infty} n^{\frac{1}{\sqrt{n}}}$, it suffices to compute $\lim _{x \rightarrow \infty} x^{\frac{1}{\sqrt{x}}}=\lim _{x \rightarrow \infty} e^{\frac{\ln x}{\sqrt{x}}}$.
In view of this, we compute $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}$. By L'Hospital's Rule,

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{x}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{\frac{1}{2 \sqrt{x}}}=\lim _{x \rightarrow \infty} \frac{2}{\sqrt{x}}=0
$$

Therefore, $\lim _{x \rightarrow \infty} x^{\frac{1}{\sqrt{x}}}=e^{0}=1$, and hence by sequential criterion, $\rho=\lim _{n \rightarrow \infty} n^{\frac{1}{\sqrt{n}}}=\lim _{x \rightarrow \infty} x^{\frac{1}{\sqrt{x}}}=1$, and hence the radius of convergence is $R=\frac{1}{\rho}=1$.

