THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2060B Mathematical Analysis II (Spring 2017) HW11 Solution

Yan Lung Li

1. (P.286 Q3)

Let $\epsilon > 0$ be given, since $\sum_{n=1}^{n} c_n \sin nx$ converges uniformly on \mathbb{R} , by Cauchy Criterion (9.4.5), there exists $N \in \mathbb{N}$ such that for all $n \ge N$, $x \in \mathbb{R}$

$$|c_n \sin nx + \dots + c_{2n} \sin 2nx| < \epsilon$$

Now fix $n \ge N$, choose $x = \frac{\pi}{6n}$, then for all $k \in \mathbb{N}$ such that $n \le k \le 2n$, $\frac{1}{2} \le \sin kx \le 1$. Since (c_n) is a sequence of positive decreading he above inequality becomes

$$\begin{aligned} \varepsilon &> |c_n \sin nx + \dots + c_{2n} \sin 2nx \\ &= c_n \sin nx + \dots + c_{2n} \sin 2nx \\ &\geq \frac{1}{2}(c_n + \dots + c_{2n}) \\ &\geq \frac{n+1}{2}c_{2n} \end{aligned}$$

Therefore, $2(n+1)c_{2n} < 4\epsilon$. Now we claim that for all $m \ge 2N+1$, $|mc_m| < 4\epsilon$

Case I: m is even: then m = 2n for some $n \ge N$, then by above inequality,

$$|mc_m| = 2nc_{2n} < 2(n+1)c_{2n} < 4\epsilon$$

Case II: m is odd: then m = 2n + 1 for some $n \ge N$, then by above inequality,

$$|mc_m| = (2n+1)c_{2n+1} < 2(n+1)c_{2n} < 4\epsilon$$

Therefore, for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m \ge 2N$, $|mc_m| < 4\epsilon$, i.e.

$$\lim_{n} nc_n = 0$$

2. (P.286 Q6b)

Due to the result of Q5 of Exercises 9.4, it suffices to compute $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$:

$$\frac{|a_n|}{|a_{n+1}|} = \frac{n^{\alpha}}{n!} \cdot \frac{(n+1)!}{(n+1)^{\alpha}} = \frac{n+1}{(1+\frac{1}{n})^{\alpha}}$$

Therefore, $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{n+1}{(1+\frac{1}{n})^{\alpha}} = +\infty$, and hence the radius of convergence is $R = +\infty$.

3. (P.286 Q6c)

Due to the result of Q5 of Exercises 9.4, it suffices to compute $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$:

$$\frac{|a_n|}{|a_{n+1}|} = \frac{n^n}{n!} \cdot \frac{(n+1)!}{(n+1)^n} = \frac{1}{(1+\frac{1}{n})^n}$$

Therefore, $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{1}{(1+\frac{1}{n})^n} = \frac{1}{e}$, and hence the radius of convergence is $R = \frac{1}{e}$.

4. (P.286 Q6f)

We compute $\rho = \lim_{n \to \infty} (|a_n|)^{\frac{1}{n}}$ directly:

$$(|a_n|)^{\frac{1}{n}} = (n^{-\sqrt{n}})^{\frac{1}{n}} = \frac{1}{n^{\frac{1}{\sqrt{n}}}}$$

To compute $\lim_{n \to \infty} n^{\frac{1}{\sqrt{n}}}$, it suffices to compute $\lim_{x \to \infty} x^{\frac{1}{\sqrt{x}}} = \lim_{x \to \infty} e^{\frac{\ln x}{\sqrt{x}}}$. In view of this, we compute $\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$. By L'Hospital's Rule,

$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{2\sqrt{x}}} = \lim_{x \to \infty} \frac{2}{\sqrt{x}} = 0$$

Therefore, $\lim_{x \to \infty} x^{\frac{1}{\sqrt{x}}} = e^0 = 1$, and hence by sequential criterion, $\rho = \lim_{n \to \infty} n^{\frac{1}{\sqrt{n}}} = \lim_{x \to \infty} x^{\frac{1}{\sqrt{x}}} = 1$, and hence the radius of convergence is $R = \frac{1}{\rho} = 1$.